Machine Learning: Recommender Systems & Dimensionality Reduction

Product type
Logo Coursera (CC)
Provider rating: starstarstarstar_borderstar_border 6.3 Coursera (CC) has an average rating of 6.3 (out of 4 reviews)

Need more information? Get more details on the site of the provider.

Description

When you enroll for courses through Coursera you get to choose for a paid plan or for a free plan

  • Free plan: No certicification and/or audit only. You will have access to all course materials except graded items.
  • Paid plan: Commit to earning a Certificate—it's a trusted, shareable way to showcase your new skills.

About this course: Case Study: Recommending Products How does Amazon recommend products you might be interested in purchasing? How does Netflix decide which movies or TV shows you might want to watch? What if you are a new user, should Netflix just recommend the most popular movies? Who might you form a new link with on Facebook or LinkedIn? These questions are endemic to most service-based industries, and underlie the notion of collaborative filtering and the recommender systems deployed to solve these problems. In this fourth case study, you will explore these ideas in the context of recommending products based on customer reviews. In this course, you will explore dimensionality reduc…

Read the complete description

Frequently asked questions

There are no frequently asked questions yet. If you have any more questions or need help, contact our customer service.

Didn't find what you were looking for? See also: Mathematics, C/C++, Further Mathematics, Applied Mathematics, and Engineering Mathematics.

When you enroll for courses through Coursera you get to choose for a paid plan or for a free plan

  • Free plan: No certicification and/or audit only. You will have access to all course materials except graded items.
  • Paid plan: Commit to earning a Certificate—it's a trusted, shareable way to showcase your new skills.

About this course: Case Study: Recommending Products How does Amazon recommend products you might be interested in purchasing? How does Netflix decide which movies or TV shows you might want to watch? What if you are a new user, should Netflix just recommend the most popular movies? Who might you form a new link with on Facebook or LinkedIn? These questions are endemic to most service-based industries, and underlie the notion of collaborative filtering and the recommender systems deployed to solve these problems. In this fourth case study, you will explore these ideas in the context of recommending products based on customer reviews. In this course, you will explore dimensionality reduction techniques for modeling high-dimensional data. In the case of recommender systems, your data is represented as user-product relationships, with potentially millions of users and hundred of thousands of products. You will implement matrix factorization and latent factor models for the task of predicting new user-product relationships. You will also use side information about products and users to improve predictions. Learning Outcomes: By the end of this course, you will be able to: -Create a collaborative filtering system. -Reduce dimensionality of data using SVD, PCA, and random projections. -Perform matrix factorization using coordinate descent. -Deploy latent factor models as a recommender system. -Handle the cold start problem using side information. -Examine a product recommendation application. -Implement these techniques in Python.

Created by:   University of Washington
  • Taught by:    Carlos Guestrin, Amazon Professor of Machine Learning

    Computer Science and Engineering
  • Taught by:    Emily Fox, Amazon Professor of Machine Learning

    Statistics
Basic Info Course 5 of 6 in the Machine Learning Specialization. Language English How To Pass Pass all graded assignments to complete the course. User Ratings 4.9 stars Average User Rating 4.9 Course 5 of Specialization Build Intelligent Applications. Master machine learning fundamentals in five hands-on courses. Machine Learning University of Washington Learn More Coursework

Each course is like an interactive textbook, featuring pre-recorded videos, quizzes and projects.

Help from your peers

Connect with thousands of other learners and debate ideas, discuss course material, and get help mastering concepts.

Certificates

Earn official recognition for your work, and share your success with friends, colleagues, and employers.

About University of Washington Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world.

Syllabus
There are no reviews yet.

    Share your review

    Do you have experience with this course? Submit your review and help other people make the right choice. As a thank you for your effort we will donate £1.- to Stichting Edukans.

    There are no frequently asked questions yet. If you have any more questions or need help, contact our customer service.